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Abstract 

For tp-scan experiments rotating the crystal through a 
three-beam case the rocking-curve: profiles have been 
calculated on the basis of the dynamical theory of 
X-ray diffraction. Divergence and wavelength spread 
of the incident beam have been taken into account. It is 
shown that for centrosymmetric crystal structures the 
asymmetry of the profiles is related to the sign of the 
triple product of the structure factors F(h)F(g)F(h -- g) 
which are involved in a three-beam case. If anomalous 
absorption ('double Borrmann' effect) can be neglected 
the typical asymmetry is independent of the diffraction 
geometry (Laue or Bragg case). For Laue geometry 
and thick crystals Co t > 1) corrections are necessary. 
For centrosymmetric structures it may be possible to 
determine the phase sum of a triplet by inspection of 
the rocking curve without computer calculations. The 
general features of the rocking curve are discussed and 
a physical interpretation is given. 

1. Introduction 

It has been suggested for a long time that, in X-ray and 
electron multiple diffraction processes where several 
Bragg reflections are excited simultaneously, the 
intensities of the diffracted beams depend on the 
relative phases of the structure factors involved 
(Lipscomb, 1949; Kambe, 1957; Hart & Lang, 1961; 
Colella, 1974; Post, 1979; Chapmann, Yoder & 
ColeUa, 1981; Chang, 1982). Particularly for the 
three-beam case where two reciprocal-lattice points 
(r.l.p.'s) H and G lie simultaneouly close to or on the 
Ewald sphere besides the origin O of the reciprocal 
space, attempts have been made to deduce information 
on the phases from the observed reflection anomalies 
(Aufhellung and Umweganregung). The intensities of 
the three-beam reflections are, in fact, influenced by the 
interference effects of the scattered waves. For 
instance, the directly excited wave diffracted at the 
lattice plane (h) and the detour excited wave succes- 
sively reflected at the lattice planes (g) and (h - g) are 
propagated in the same direction. The amplitude of the 
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resulting wave depends on the difference of the phases 
of both waves: 

~ z  = +[--¢p(h) + cp(g) + ~o(h-  g)]. (1) 

This kinematical approach cannot adequately describe 
the amplitudes of the self-consistent wave field estab- 
lished by all possible combinations of coupling of the 
three beams. There are also couplings which are 
independent of the phase sum • z. Moreover, 
anomalous absorption effects (Borrmann effect) may 
suppress the phase effect. Therefore the phenomenon of 
multiple diffraction must be treated on the basis of 
dynamical theory. As was pointed out by Ewald & 
H6no (1968) in the dynamical theory for the three- 
beam case too, the phase-dependent terms only contain 
the sum of phases Oz, i.e. the physical results are 
independent of the choice of the origin for describing 
the crystal structure. 

Information on the phase sum ~ may be provided 
by the profile of a ~,-scan rocking curve at the 
transition from the two-beam to the three-beam case 
(Billy & Hiimmer, 1981). A suitable technique to 
measure this effect is the so called !g-scan experiment in 
which the crystal is rotated around the direction of a 
vector h of the reciprocal lattice. The corresponding 
r.I.p. H lies on or very close to the Ewald sphere, and 
on rotating the crystal a second r.I.p. G crosses the 
sphere. While G moves through, the diffracted intensity 
of the h reflection is measured. 

In centrosymmetric crystal structures the phase sum 
• ~ of a triplet of structure factors can only be zero or 
zt, corresponding to a positive or negative sign of the 
triple product F(h)F(g)F(h -- g) (in short: positive or 
negative triplet), if one neglects the imaginary part of 
the atomic scattering factor. The question arises 
whether the rocking-curve line shape is connected with 
this sign. 

To study this relation we calculated three-beam 
rocking curves based on von Laue's formulation of the 
dynamical theory. As a model crystal structure we 
chose a-A120 3 (space group R3c) in which positive and 
negative triplets with comparable structure amplitudes 
exist. 
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In a first approximation an ideal monochromatic and 
parallel incident beam is assumed. In a second step 
these restrictions are removed in order to evalute the 
experimental verification under more realistic con- 
ditions. In the third section we discuss the results on a 
simplified mathematical basis and give a physical 
interpretation of the general features of the three-beam 
rocking curve. 

2. Calculation of  the roeklng-curve profile 

(a) Theory and computational details 

The interaction between X-rays and a perfect crystal 
will be described within the scheme of the dynamical 
theory by Maxwell's equations for a medium with a 
periodic complex dielectric constant combined with the 
boundary conditions at the entrance and exit surfaces. 
The solution of Maxwelrs equations are given by the 
solutions of the fundamental equations of the 
dynamical theory which describe the self-consistently 
coupled wave fields inside the crystal (Laue, 1960): 

K 2 _ k 2 

K------~ Dn =--F~m F ( n -  m) Dmtnr (2) 

Concerning the three-beam case, (2) leads to a set of 
three vector equations with m, n = 0, h, g. 0 is a vector 
of zero length; h, g are the vectors of the reciprocal 
lattice to the r.l.p.'s H, G; k is the length of the vacuum 
wave vector. K n is the complex wave vector inside the 
crystal, directed towards a reciprocal-lattice point; D~ 
is the amplitude of the dielectric displacement vector of 
the wave with Kn; Dm[n] is the component of O m 
perpendicular t o  Kn;  F(n -- m) are the structure 
factors with complex atomic scattering factors. F is a 
number of the order of 10 -5. 

The unknowns in these equations a re  K n and D n. For 
the numerical calculation of the surface of dispersion 
(surface of dispersion is the loci of the end-points of all 
permitted Kn) and of the relative excitation amplitudes 
Dn,  it is convenient to transcribe (2) in an eigenvalue 
problem. This procedure is already described in the 

Fig. 1. The position of the Laue point La and one tiepoint, wave 
vectors K.and polarization vectors on, n n in reciprocal space. 

literature (Pinsker, 1978, pp. 422-430), but for the 
self-consistency of this paper the essential steps will be 
outlined. This may be helpful for the understanding of 
the further discussion. 

In order to describe the position of the surface of 
dispersion in reciprocal space a complex vector v is 
introduced, which leads from the three-beam Laue 
point La (center of the Ewald sphere with radius k) to 
the end-point of K n (tiepoint) on the surface of 
dispersion (cf. Fig. 1). The position of the Laue point 
itself is given by k 0 from La to the origin O. Thus, k o 
gives the direction of the incident beam for the exact 
three-beam setting and the following relations hold: 

K o = k  o - v ,  K n = K  o + n ,  
(3) 

k n = k  o + n ,  n = h , g .  

k o can be calculated according to the formula given by 
Ewald & H6no (1968). 

Because of the continuity of the tangential compo- 
nents of the wave vectors, k o and K 0 can only differ in 
the component perpendicular to the crystal surface. 
They are related by 

K o =  k o - (x .v ) .x .  (4) 

x is a unit vector in reciprocal space normal to the 
crystal surface and directed inwards from the surface. 
By two additional unit vectors y, z lying in a plane 
parallel to the crystal surface a Cartesian base is set up, 
the origin of which is the Laue point. 

As the vacuum wave vector k o is not complex, only 
the component v x of v can be complex and its 
imaginary part v" is proportional to the absorption 
coefficient. From (3) and (4), (2) can be written as: 

[a(kn.v) --/-~(0)]Dn = F ~  F ( n - -  m)Dmlnl; 
m a n  

m, n = 0, h, g, a = 2[ 1 + FF(0)]ko 2 (5) 

Second-order terms of v can be neglected. They are of 
the order of 10 -6 compared with k 2 for small deviations 
from the three-beam setting (< 5'). With this approxi- 
mation only those beams are considered which are 
selected by the Ewald construction, i.e. specular 
reflected waves are omitted assuming larger glancing 
angles than the critical angle for total reflexion (Kishino 
& Kohra, 1971). Then equations (2) reduce to a linear 
system of equations (5). 

As can be seen in the funamental equations (2), the 
coupling between two waves D m and D n depend on the 
structure factor F(n - m) and on the diffraction 
geometry by the component Dminl, which is given by 

D m [ n l  = D m - -  s n . ( D m .  s n ) ;  S n ---- Kn/I K hI. (6) 

Since D n is always perpendicular to s n only two 
components can be chosen independently: 

D n = D n a n + D n 7t n. (7) 
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Sn, nn, On form a Cartesian base. The unit vectors o n 
and lr n can be arbitrarily aligned, but it is convenient to 
regard all vectors n n lying in the plane of K 0 and K h as 
shown in Fig. 1. 

The geometrical coupling between the components of 
D n can now be expressed in terms of scalar products of 
nn and a n. If (6) and (7) are inserted in (5) and then 
multiplied by o n and n n respectively for the components 
Dg and D] a set of linear scalar equations results: 

1 

bnD'  ~ + - - r  ~ F ( n - m ) ( D ~ n O m O  n + DmnmOn) 
ak~ m * n  

= v x D~ 

bn Dn + - -  

1 
r Z F ( n -  m) (DTn 0 m n n + DTn n m n n) 

ak  x m, ,  

= v x Dn 

with 

(8) 

kY. vy + k~ v z IF(O)  
bn = - -  + - - ;  m, n = O, h, g. 

k x ak  x 

This eigenvalue problem can be written in the form 

S Y ( j )  = Vx(j)  Y ( j ) .  (9) 

For the three-beam case S is a six by six matrix and for 
each eigensolution Vx(j) ( j  = 1 to 6) the components 
of Y ( j )  are given by Y( j )  = [Dg(j), D'~(j), Dg( j ) ,  
Dg(j), D~(j) ,  D~(j)I. 

Only one component of v can be determined by (8), 
which according to (4) must be v x. The tangential 
components vy and v z depend only on the direction of 
the incident beam. In order to relate the input 
parameters to the crystal orientation in a ~,-scan 
experiment, a new two-cl~mensmnal coordinate system 
is introduced with the mutually orthogonal unit vectors 
a~ and a 2 with its origin at the Laue point. The vectors 
a, and a2 lie on a plane normal to k o, that is the 
tangential plane at L a  on a sphere of radius I kol around 
O (see Fig. 2). The component ~ in the direction of a~ 
should describe the rotation angle ~ of the crystal 
around the direction of h. Therefore, a~ lies in the plane 
perpendicular to h and passing through the midpoint of 
h. The component /2 of a2 defines the deviation of h 
from the Ewald sphere. ~ = .f2 -- 0 gives the exact 
three-beam setting. Then v is given by 

v = v x x + ¢'; ¢,, = i / ta  1 + . Q a  2. ( 1 0 )  

The projection of ~ along x onto the (y,z) plane gives 
the components vy and vz.- 

The solutions of the eigenvalue problem were 
obtained by numerical methods using subroutines of 
the software package E I S P A  C K  of CERN modified for 
a PDP 11/45. 

If the calculated relative components of the eigen- 
vectors Y ( j )  are inserted into the boundary conditions, 

the absolute values of D~,"(j) can be determined. The 
boundary conditions for a parallel-sided crystal slab are 
summarized in Table 1. They depend on whether at the 
entrance surface the wave vectors K, (n = h, g) of the 
diffracted beams are directed into the crystal (K,.  x > 
0, Laue case) or out from the crystal (K n. x < 0, Bragg 
case). It is assumed that no refraction takes place at the 
boundaries. The amplitude of the incident beam is 
taken as unity. 

If there are Nnr Bragg cases involved in an N-beam 
case, there will exist tiepoints, the waves of which have 
a negative absorption coefficient [g(j) < 0]. This is 
equivalent to the fact that the Poynting vectors S(j) of 
these modes are directed outwards from the entrance 
surface. These modes are called 'forbidden modes'. The 
number No of permitted propagation modes is given by 
(Pinsker, 1978, p. 478) 

N v =  2 ( U - N n r ) .  (11) 

For thick crystals the forbidden modes have no 
physical meaning because their wave amplitudes 
increase exponentially with the distance from the 
entrance surface. They will be eliminated by the 
boundary conditions at the exit surface (Table 1). 

With the known amplitudes D'~,"(j) the energy flow 
in the direction of k n outside the crystal can be 
calculated by summing up the intensities of the 
individual waves: 

I n ( y , / 2 ) =  ½ Z [Dg(j)  2 + Dg(j)  2] exp [--2g(j)  t]. (12) 
J 

Equation (12) is valid when the following conditions 
hold. The incident beam is unpolarized. Neither 
Pendel l6sung interference phenomena nor the spatial 
distribution of intensities within the fan of beams at the 
exit surface need to be considered. The latter con- 
ditions will be discussed in more detail in § 2(c). For 
very thin crystals (t less than a Pendel l6sung period) 
and a strictly parallel and monochromatic incident 
beam (12) is not valid. Hence amplitudes rather than 
intensities must be summed: 

In(y ,  D) = ½1Y D~( j )  exp [2n/Kn(j ) . r ] l  2 
t 

+ ½1X D~( j )  exp [2n/Kn(j) . r ]  I ~ (13) 
1 

Kn(j) = k o + n - v ( j ) .  

Table 1 Boundary  conditions 

g(j) = 4nv"(j): absorption coefficient of the waves for the jth 
tiepoint. 

t" thickness of the parallel-sided crystal slab. 

Entrance surface Exit surface 

n = 0 ZDo(j) = 1 - 

n = h,g 1 
L a u e  case  Z Dn(J')  = 0 
Bragg case J - 0 = Z Dn(j) exp [---~g(j)t] 

J 
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(b) Results 

By use of the procedure described above we 
calculated the ~'-scan rocking curves Ih(~',O)= con- 
stant) of several three-beam cases for the centro- 
symmetric structure a-Al303 (space group R3c). To a 
first approximation the calculations are based on the 
assumption of an ideal monochromatic (Cu Kct: 2 -- 
1.54 A) and completely parallel collimated incident 
beam. In § 2(c) these restrictions are removed. Exam- 
ples of typical results for a positive and negative triplet 
are shown in Figs. 2 and 3, where for comparison in 
each case rocking-curve profiles of the h = 110 
reflection are drawn for different diffraction geometries. 
The theoretical values In0 have been normalized with 
respect to its two-beam intensity I~2~0. The notation 
Laue--Bragg, for instance, means that the diffracted 
beams with wave vectors K h and Kg represent Laue 
and Bragg cases respectively. 

The structure factors of the selected triplets should 
have equal values and medium strength compared to 
F_(0). Therefore, we chose the positive triplet with !] = 
110, g = 2i0, h -- g = [20 and the negative triplet with 
I! = i[0, g = 213, h - g = [23. The components hkl 
refer to the hexagonal setting. The values of the 
structure factors are: 

F(000)=  303, F(IIO)=F(2[O)=F([20)=63, 

F(2i3)  = F(I23) = 76. 

The positive al direction is always defined such that the 
r.I.p. G enters the Ewald sphere, i.e. G moves from 
outside (~u < 0) to inside (~ > 0) the sphere (Chang, 
1982) (out-in case). 

% 1. - . . . . . . .  9 .  . . . .  i 

-~0 -20 0 20 /,0 

(a) 

% 

-~o -2o 0 2o " ~o- 

(seconds of arc) 
( b )  

Fig. 2. (a) Rocking-curve profiles I(~, Q = 2.5") for a Laue--Laue 

Figs. 2(a) and (b) indicate that the asymmetry of the 
line profiles is definitely related to the sign of the triplet. 
If the crystal is rotated in the out-in direction for the 
case of a positive triplet, the intensity is first increased, 
when G approaches the Ewald sphere, and is lowered, 
when G moves away from it. Just the opposite holds for 
a negative triplet. The parameter t'l :/: 0 indicates that h 
is slightly off the exact two-beam setting so that the 
two-beam intensity is about 50% of its maximum value. 
Concerning the rocking curves for the Laue-Bragg and 
Bragg-Laue geometry, which are not drawn here, we 
have obtained equivalent results. Hence the general 
features of the rocking curves do not depend on the 
direction of the surface normal of the crystal. For our 
calculations we chose symmetrical Laue and nearly 
symmetrical Bragg geometry with respect to the h 
reflection. 

The influence of the anomalous absorption (en- 
hanced Borrmann effect) is different for the Laue and 
Bragg diffraction geometries. As for the Bragg-X 
cases, the intensity is hardly affected by absorption 
effects because the Bragg-reflected beam does not enter 
the crystal. However, in Laue-X cases the anomalous 
absorption may drastically change the rocking-curve 
profile. This is illustrated in Fig. 3 where for a 
Laue-Laue case rocking curves are shown with 
different parameters /jo t. (/~0 is the absorption 
coefficient in the one-beam case; for A1203 ,  flo = 121 

o 

~Z I. % 

091 

-120 -60 0 60 120 

(a) 

k 
75 

-/.0 -20 0 

(b) 
20 40 

-~0 -20 0 20 l,O 

~V (seconds of arc) 
ease for a positive (dashed line, O) and a negative triplet (full (c) 
line, O); #0 t = 1.3. (b) rocking-curve profiles I(~,, .¢2 -- 10") for a Fig. 3. Rocking-curve profiles I(W, ~Q = 0) for a Laue -Laue  case 
Bragg-Bragg c a s e  for a positive (dashed line) and a negative for equal triplets as in Fig. 2: (a) positive triplet,/tot = 0.01; (b) 
triplet (full line); #0t = 3.9. positive triplet, ~0 t = 1.3; (c) negative triplet, ~ t  = 1.3. 
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cm-L) In contrast to Fig. 2 , /2  = 0, i.e. the two-beam 
setting is on its maximum value. 

In Fig. 3(a), for an unreasonably thin crystal with 
t = 1 gm [calculation according (13)], the influence of 
anomalous absorption is negligibly small. The asym- 
metry is that typical for a positive triplet, the small 
oscillations are due to interference effects of the 
diffracted waves. The characteristic asymmetry is 
hardly affected by this PendellSsung phenomenon. By 
use of (12) the same type of asymmetry is obtained. 

For a thicker crystal with t = 0.1 mm the enhanced 
Borrmann effect completely changes the typical profile 
(Fig. 3b). For comparison, in Fig. 3(c) the rocking 
curve is drawn for a negative triplet. As can be seen by 
comparing Figs. 3(b) and 2(a) with equal parameter 
/tot, the anomalous absorption effect is much weaker 
when the wave field with K h is not fully excited (fl 4: 0). 
The influence of the Borrmann effect on the profile 
depends on the deviation of the absorption coefficient 
from its two-beam value which is largest near the exact 
three-beam setting (O = 0, ~, = 0), and on the 
excitation amplitudes of the waves. 

When the two-beam intensity level is at its maximum 
value, then essentially a dip (Aufhellung) can be 
observed in the three-beam rocking curve (Fig. 3c). 
(Note that for the Bragg case the maximum two-beam 
intensity is shifted from the exact two-beam setting/2 = 
0.) 

In conclusion, the results can be summarized as 
follows: 

(i) When the influence of the anomalous absorption 
is negligibly small the asymmetry of the three-beam 
rocking-curve profile is strictly related to the sign of the 
triplet independent of the diffraction geometry. 
Therefore it is: 

./~2) 
I+(-~/)/~)' > I~,(-~/)/m 

and 

I+~ (0/I~ ~) < I~(~)/I~). 

If it is known whether the r.l.p. G moves towards or 
away from the Ewald sphere (Chang, 1982) while the 
crystal is rotated, the sign of the triplet can be 
determined by a ~,-scan experiment without computer 
calculations. 

(ii) In the case that the anomalous absorption effects 
cannot be neglected, there is also a clear difference 
between the rocking-curve line shape of a positive and a 
negative triplet (cf. Figs. 3b and c). Comparison with 
the calculated profile may be necessary in order to 
extract the phase information. 

(iii) The influence of the anomalous absorption can 
be reduced when the two-beam setting of the dif- 
fraction vector h is slightly off the Ewald sphere. Then 
additionally the asymmetry is more pronounced 
because the increase of the two-beam level is larger. 

(c) Effect of divergence and spectral width of the 
incident beam 

The calculations so far have been based on the 
following assumptions: (i) neglect of Pendell6sung 
interference phenomena as well as neglect of the 
different directions of energy flow given by the 
Poynting vectors S(j) of each mode; (ii) no divergence 
of the incident beam; (iii) ideal monochromatic X-ray 
source. 

For comparison of the theoretical results with 
measurements under realistic conditions, point (i) is no 
restriction. In practice, the irregularities in the thickness 
of the crystal produce an averaging effect over the 
PendellSsung periods. Moreover, the incident beam is 
divergent and a wide fan of diffracted beams is formed 
in the crystal. If the entrance slit of the detector is 
larger than the diameter of the diffracted beam the 
detector will integrate over the spatial distribution of 
the diffracted rays within the fan. In both cases, the 
waves can be treated separately and intensities (pro- 
portional to D~ ,~2) rather than amplitudes add for the 
exit beam (Batterman & Cole, 1964). Then, to measure 
the rocking curve the crystal has to be rotated since the 
angular resolution of the detector is only poor. The 
detector remains in a fixed position. 

The divergence and spectral width having been taken 
into account, the total power I(g/) reflected by the 
crystal must be calculated by integrating over the 
angular range a of divergence and over the wavelength 
spread A2. The angular distribution of the intensity is 
represented by the geometrical function G(a), which in 
general varies only slowly with a and can be considered 
to be a constant. The wavelength spread is given by the 
spectral function 3(2 - 20); 20 is the wavelength 
corresponding to the center of the characteristic line. 

The variation of the wavelength yields a variation 
Ak 0 of the three-beam Laue point La. Decomposition 
of Ako(2) in the direction of a 1, a 2 and s o gives the 
angular difference A~(2) and A/2(2) between the exact 
three-beam settings with respect to the wavelengths 2 o 
and 2. 

With the angular terms due to divergence (%,ate) 
and an additional crystal rotation ~ the integrated 
intensity I(~/)is given by (Alexander & Smith, 1962): 

I(~,) = G(an)G(a,) f de n f dot, f d2'S(2 o - 2') 

x f d2"S(2 o - 2") I [ % -  AV(2") 
-~l 

+ ~,, at~ - A.O(2')]. (14) 

The reduction of these convolution integrals is similar 
to that given by James (1948) for a double-crystal 



846 PHASE DETERMINATION BY THREE-BEAM INTERFERENCE 

spectrometer: 

+ 0 0  t~2 -~.2 

I(~,) = constant x f dat~ f d% f d2"S(2 o - 2 " )  
- -oo a l  -~.1 

x I[~, + % - A~u(;t"), %].  (15) 

This derivation is valid when no monochromator 
crystal is used. It should be noted that the angular 
range A~,(2) due to the spectral width can be reduced 
when Ak0(;t) has only a small component in the 
direction of a~, i.e. k0(2) is nearly parallel to ko(20). 
This can be achieved with small diffraction vectors h 
and g. 

By use of (15) we calculated the integrated reflected 
power I(~,) for the same diffraction geometries and the 
same triplets as in § 2(b). The angular range of 
divergence of the incident beam was assumed to be ct = 
2'. The spectral function S(2 - 20) was considered to 
be Gaussian-like and the half-width of the Cu Ka line of 
A2/2 = 3 x 10 -4 (Pinsker, 1978, p. 284) gives an 
angular range A~, = 18" and A~, = 13" for the positive 
and negative triplet respectively. The numerical in- 
tegration over O is carried out in an interval for which 
the ratio I(~l,$21)/Imax(Vll,J'2o) ~ 10 -3. 

Evaluation of the integral (15) for the Bragg-Bragg 
case is expected to give no significant change of the 
asymmetry because the integral with respect to /2 is 
taken over profiles with nearly the same sense, i.e. for a 
negative triplet, for instance, for each .(2 the rocking 
curve I(~,, .(2 = constant) first decreases and then 
increases. By integration the variation of the two-beam 
intensity is reduced to the order of some few percent 
and the width of the profile is increased. The results are 
illustrated in Fig. 4(a). Inspection of Figs. 2(a) and 3(c) 
reveals that the same arguments hold for the Laue- 

o,OS] A 

]. - . . . . . . . .  - \ 

- 3 0 0  - 1 5 0  0 1 5 0  3 0 0  

(a) 

-3oo -150 0 150 30o 
(seconds of arc) 

(b) 

Fig. 4 (a) Integrated rocking-curve profiles I(~) for the same 
Bragg-Bragg case as in Fig. 2(b); /~0 t = 3.9. (b) Integrated 
rocking-curve profiles I(~) for the same Laue-Laue case as in 
Fig. 2(a),/~0t = 1.3. 

Laue geometry and a negative triplet, as shown in Fig. 
4(b). 

But in the case of a positive triplet the behavior of the 
rocking curve is different when #0t ~ 1. The integral 
over .(2 runs over line shapes with different asym- 
metries (compare Figs. 2a and 3b). As a consequence, 
by integration the characteristic rocking-curve profile 
may vanish. The result is illustrated in Fig. 4(b) and 
shows only a small decrease of the two-beam intensity, 
of the order of 1%. The different behavior for positive 
and negative triplets in the case of a thick crystal has 
already been discussed by Post (1979). Careful 
inspection of the excitation amplitudes shows that this 
difference must be due to absorption. For a positive 
triplet there are four sheets of the surface of dispersion 
with a lowered absorption coefficient and only two 
sheets for a negative triplet. The characteristic profile of 
the latter is therefore less affected by the thickness of 
the crystal. 

If the influence of anomalous absorption can be 
neglected the profile shows the characteristic asym- 
metry for a positive triplet too. This may be important 
in the case of a mosaic crystal where dynamical theory 
is valid within each mosaic grain and the size of these 
blocks will reduce the anomalous absorption effects. 

The profiles of Figs. 4(a) and (b) are typical ones for 
three nearly equal structure factors. If the structure 
factor F(h) is small compared with F(g) and F(h  - g) 
only an increase of the low two-beam intensity level can 
be observed (Umweganregung) and it is difficult to 
determine unambiguously the sense of the asymmetry. 
If, on the other hand, F(h) is large only a dip will 
appear and the same difficulties arise. 

It should be noted that the profile is completely 
smeared out if the divergence of the incident beam is 
too large. 

3. Discussion 

In this section we discuss the general features of the 
~,-scan rocking curve for the three-beam case on a 
simplified mathematical basis. A physical interpre- 
tation is given. 

The outcome of (8) and (9) reveals that there always 
exist three pairs of nearly doubly degenerate eigen- 
solutions (Hildebrandt, 1967). The two eigensolutions 
of each pair essentially correspond to a and n 
polarization respectively. Neglecting the geometrical 
coupling factors a n. ~tm the determinant of (8) and (9) 
can be reduced to three by three for one polarization 
only. This reduced system of equations now gives the 
general features of the three-beam case too. 

If a hypothetical centrosymmetric structure is 
assumed where positive and negative triplets exist with 
equal modulus of structure factors and equal geometri- 
cal coupling factors, in the case of a positive (S +) or a 
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negative triplet (S-), the determinant of the reduced 
system of equations is given by: 

Go-,.Tx a_°,f(-h) 
@ +-= a~"(h) Gh--tTx a~'(h--g) =0, (16) 

h) G 

b" n = constant x (i.sn)y.z, n = 0, h, g. The negative 
triplet is obtained by changing the sign of one structure 
factor (origin at the center of symmetry), for example 
the sign of F(g) and F( -g) .  For this discussion the 
origin of the x,y,z coordinate system is shifted from the 
Laue point to the Lorentz point (Lo), therefore ~ is a 
vector analogous to v but starting from Lo. a~, 
represents the geometric coupling of D m and Dn. 

If in S- the direction of ~ is inverted ( i  --, - i ) ,  that 
means the signs of the main diagonal elements are 
changed, the expansion of the determinant S + and S -  
leads to identical characteristic polynomials for the 
eigenvalue v x. Thus, in the special case for a positive 
and a negative triplet the corresponding surfaces of 
dispersion are related to each other by inversion at Lo. 

As the wave fields are determined by the tiepoint on 
the surface of dispersion which depends on ~ and O it 
must be I+(~,,.0) = I~-(-~,,-.0). Therefore, the line 
profile for a positive triplet I+(~,,.O0) and the profile for 
a negative triplet I~-(~',-~0) are simply reversed 
rotating the crystal in the same (e.g. out-in) direction. 

In a realistic centrosymmetric structure for positive 
and negative triplets different r.l.p's are involved, i.e. 
different geometrical coupling factors and different 
structure amplitudes. Thus the inversion of the rocking 
curve stated above is not exact, but in principle the 
statement remains true. 

Ewald & H6no (1968) have pointed out that for cpz 
= +n/2 the dispersion surface is centrosymmetric 
about the Lorentz point. In such a case the rocking 
curve must be symmetric. This may be a hint on how to 
get information on the phase sum in noncentro- 
symmetric structures. 

In the following a physical interpretation is given for 
the asymmetry of the line profiles. The interference of 
the coupled waves is considered from a more kine- 
matical point of view in accordance with the original 
idea of Lipscomb (1949). When two net planes (h) and 
(g) are simultaneously in reflection position, there exists 
not only the direct diffracted wave in the direction of 
K h [amplitude YhDo, phase q~(h)], but also a wave which 
is excited by the successive reflection at the lattice 
planes (g) and (h -- g) [amplitude 7fl90, phase ~p(g) + 
f0(h -- g)]. Detour reflection of higher order should be 
neglected here. The superposition of these two waves 
can approximately be expressed by 

D h = yh(O)Do exp [i~o(h)] 

+ ),g (~ )D o exp i[(p(g) + (p(h-- g)]. (17) 

The factors y depend on the deviation Y2, ~, from the 
exact reflection position. 

Concerning the excitation amplitudes we refer to the 
results of the dynamical theory. In a ~,-scan experiment 
yh(D) is constant and of the order of one for a nearly 
symmetric reflection. Varying ~', yg(~/) drops rapidly 
down to zero from its maximum value which close to 

-- 0 is of the order of one too. 
Now the phase relationships are considered. In the 

centrosymmetric cases the interference should be either 
constructive or destructive depending on tP z. But the 
outcome of dynamical theory reveals an additional 
phase shift of zt when the r.I.p. G moves through the 
Ewald sphere. For a three-beam case this continuous 
phase shift can be seen in Fig. 5, where for simplicity 
the phase relationship is shown for one polarization 
state only. The phase sum ~z  = ~(h) -- ~(g) - 
tp(h -- g) is plotted which is given by the calculated 
actual phases O(h) and @(g) of the observable waves 
with wave vectors K h and Kg and the constant phase 
~p(h - g) of the structure factor F(h - g) of the coupling 
vector h - g. Fig. 5 shows that the phase difference 
@(h) - @(g) depends on ~'. This can be written as 

•(h) - O(g)  =  0(h) -  0(g) + (18 )  

¢(h), tp(g) are the constant phases of the structure 
factor F(h), F(g) and A(~) represents the additional 
phase shift. Then, by use of (1), 

~ =  q~z + A(~'). (19) 

A(~,) varies from 0 to zc. 
The analogous phase shift occurs in the two-beam 

case, too. The phases of the diffracted waves, belonging 
to the a or fl branch, differ by ~ independent of the 
phase of the structure factor. When a r.I.p. N involved 
in a two-beam case is inside the Ewald sphere, 
essentially tiepoints on the fl branch are active, i.e. the 
phase between D O and D n is equal to tp(n). When N is 
outside the sphere, tiepoints on the a branch are active 
and the phase rp(n) is shifted by z~ (Batterman & Cole, 
1964). 

The asymmetry of the rocking-curve profile can now 
be explained as follows. When G lies outside the Ewald 

,# 

t~ _c: ,,' 
1=2. 

- 10 0 10  

( seconds  of arc) 

Fig. 5. Calculated phase sum g3z for a positive (dashed line) and a 
negative triplet (full line) for one polarization only; Bragg-Bragg 
case of Fig. 4. 
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sphere (9, < 0) the interference for a positive triplet (~z 
= 0) will be constructive (~z = 0). Since the amplitude 
of the detour excited wave [yg(9~)D0 ] increases when G 
approaches the sphere (~ Z 0), the intensity first 
increases. Then the phase Oz shifts to zc and the 
interference becomes destructive, i.e. the intensity drops 
below the two-beam intensity. With increasing 9' the 
r.l.p. G leaves the sphere and the amplitude yg(¢)D o of 
the detour excited wave becomes negligibly small and 
the observed intensity is that of the two-beam case. 

For a negative triplet (~z = zc) the situation is 
completely reversed. When G is outside the sphere (~, < 
0) there is no additional phase shift [A(~,) = 0]. Thus 
q~z = re, that means the direct and detour excited wave 
have opposite phases. But for ~, > 0 it is A(9') = zc and 
~z = 0, that means both waves have equal phases. 
Therefore the observed intensity is first decreased 
below and then increased above the two-beam inten- 
sity level. Hence, comparing the intensity profiles of the 
same reflection h involved in a three-beam case with a 
positive or negative triplet the following inequalities 
hold: 

I~-(--y/) > I~(--y/); I~-(~,) < I;(~,). 

The interference phenomena discussed above give a 
physical interpretation of some effects contained in the 
fundamental equations of the dynamical theory. It 
should be pointed out that the superposition of the exit 
waves leads to the Pendell&ung phenomenon and to 
the spatial distribution of the diffracted intensities 
within the fan of beams. These effects are not 
considered in this paper. Whether the intensities of the 
amplitudes add for the exit beams depends on the 
choice of the exit boundary conditions (Batterman & 

THREE-BEAM INTERFERENCE 

Cole, 1964) and therefore on the experimental con- 
ditions (cf. § 2c). 

We gratefully acknowledge useful discussions with 
Professor H. Burzlaff. 
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Abstract 

Mixed ?-brass/fl-brass samples have been examined by 
convergent-beam electron diffraction and electron 
microscopy. This study has led to the allocation of a 
centrosymmetric space group for the regular inversion 
antiphase domain superstructure of ?-brass, and also 
resulted in the identification of a hitherto unreported 
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tetragonal structure for the body-centred cubic ordered 
fl-brass. In the dual convergent-beam/microscopy 
examination of the ),-brass samples, images were 
taken from samples thick enough to give structured 
convergent-beam patterns. The resulting images are 
complicated by beam convergence to the extent where 
only the image symmetry can be interpreted 
directly. 
© 1982 International Union of Crystallography 


